我们提出了一种自动生成语义标签的方法,以实现汽车范围多普勒(RD)雷达光谱的真实记录。当训练神经网络从雷达数据中识别对象识别时,需要此类标签。自动标记方法除了雷达频谱之外,还取决于相机和激光雷达数据的同时记录。通过将雷达光谱翘曲到相机图像中,可以将最新的对象识别算法应用于相机图像中相关对象(例如汽车)。翘曲操作设计为完全可区分,它允许通过翘曲操作在相机图像上计算出的梯度到雷达数据上运行的神经网络。随着翘曲操作依赖于准确的场景流估计,我们进一步提出了一种新颖的场景流估计算法,该算法利用了相机,激光雷达和雷达传感器的信息。将所提出的场景流估计方法与最新场景流量算法进行比较,并且优于大约30%的W.R.T.平均平均误差。通过评估通过提出的框架以实现到达方向估计的训练的神经网络的性能,可以验证自动标签生成的整体框架的整体框架的可行性。
translated by 谷歌翻译
Classical reinforcement learning (RL) techniques are generally concerned with the design of decision-making policies driven by the maximisation of the expected outcome. Nevertheless, this approach does not take into consideration the potential risk associated with the actions taken, which may be critical in certain applications. To address that issue, the present research work introduces a novel methodology based on distributional RL to derive sequential decision-making policies that are sensitive to the risk, the latter being modelled by the tail of the return probability distribution. The core idea is to replace the $Q$ function generally standing at the core of learning schemes in RL by another function taking into account both the expected return and the risk. Named the risk-based utility function $U$, it can be extracted from the random return distribution $Z$ naturally learnt by any distributional RL algorithm. This enables to span the complete potential trade-off between risk minimisation and expected return maximisation, in contrast to fully risk-averse methodologies. Fundamentally, this research yields a truly practical and accessible solution for learning risk-sensitive policies with minimal modification to the distributional RL algorithm, and with an emphasis on the interpretability of the resulting decision-making process.
translated by 谷歌翻译
Deep Neural Networks (DNN) are becoming increasingly more important in assisted and automated driving. Using such entities which are obtained using machine learning is inevitable: tasks such as recognizing traffic signs cannot be developed reasonably using traditional software development methods. DNN however do have the problem that they are mostly black boxes and therefore hard to understand and debug. One particular problem is that they are prone to hidden backdoors. This means that the DNN misclassifies its input, because it considers properties that should not be decisive for the output. Backdoors may either be introduced by malicious attackers or by inappropriate training. In any case, detecting and removing them is important in the automotive area, as they might lead to safety violations with potentially severe consequences. In this paper, we introduce a novel method to remove backdoors. Our method works for both intentional as well as unintentional backdoors. We also do not require prior knowledge about the shape or distribution of backdoors. Experimental evidence shows that our method performs well on several medium-sized examples.
translated by 谷歌翻译
In this paper, we identify the best learning scenario to train a team of agents to compete against multiple possible strategies of opposing teams. We evaluate cooperative value-based methods in a mixed cooperative-competitive environment. We restrict ourselves to the case of a symmetric, partially observable, two-team Markov game. We selected three training methods based on the centralised training and decentralised execution (CTDE) paradigm: QMIX, MAVEN and QVMix. For each method, we considered three learning scenarios differentiated by the variety of team policies encountered during training. For our experiments, we modified the StarCraft Multi-Agent Challenge environment to create competitive environments where both teams could learn and compete simultaneously. Our results suggest that training against multiple evolving strategies achieves the best results when, for scoring their performances, teams are faced with several strategies.
translated by 谷歌翻译
We introduce a new benchmark dataset, Placenta, for node classification in an underexplored domain: predicting microanatomical tissue structures from cell graphs in placenta histology whole slide images. This problem is uniquely challenging for graph learning for a few reasons. Cell graphs are large (>1 million nodes per image), node features are varied (64-dimensions of 11 types of cells), class labels are imbalanced (9 classes ranging from 0.21% of the data to 40.0%), and cellular communities cluster into heterogeneously distributed tissues of widely varying sizes (from 11 nodes to 44,671 nodes for a single structure). Here, we release a dataset consisting of two cell graphs from two placenta histology images totalling 2,395,747 nodes, 799,745 of which have ground truth labels. We present inductive benchmark results for 7 scalable models and show how the unique qualities of cell graphs can help drive the development of novel graph neural network architectures.
translated by 谷歌翻译
扩散模型是一类生成模型,与其他生成模型相比,在自然图像数据集训练时,在创建逼真的图像时表现出了出色的性能。我们引入了Dispr,这是一个基于扩散的模型,用于解决从二维(2D)单细胞显微镜图像预测三维(3D)细胞形状的反问题。使用2D显微镜图像作为先验,因此可以根据预测现实的3D形状重建条件。为了在基于功能的单细胞分类任务中展示DIPPR作为数据增强工具的适用性,我们从分组为六个高度不平衡类的单元中提取形态特征。将DISPR预测的功能添加到三个少数类别,将宏F1分数从$ f1_ \ text {macro} = 55.2 \ pm 4.6 \%$ to $ f1_ \%$ to $ f1_ \ text {macro} = 72.2 \ pm 4.9 \%$。由于我们的方法是在这种情况下第一个采用基于扩散的模型的方法,因此我们证明了扩散模型可以应用于3D中的反问题,并且他们学会了从2D显微镜图像中重建具有现实的形态特征的3D形状。
translated by 谷歌翻译
用于生存预测的深层神经网络在歧视方面超过了经典方法,这是患者根据事件的秩序。相反,诸如COX比例危害模型之类的经典方法显示出更好的校准,即对基础分布事件的正确时间预测。特别是在医学领域,预测单个患者的存活至关重要,歧视和校准都是重要的绩效指标。在这里,我们提出了离散的校准生存(DC),这是一个新型的深层神经网络,用于歧视和校准的生存预测,在三个医疗数据集的歧视中优于竞争生存模型,同时在所有离散时间模型中实现最佳校准。 DC的增强性能可以归因于两个新型功能,即可变的时间输出节点间距和新颖的损耗项,可优化未经审查和审查的患者数据的使用。我们认为,DCS是临床应用基于深度学习的生存预测和良好校准的重要一步。
translated by 谷歌翻译
强化学习旨在通过与动态未知的环境的互动来学习最佳政策。许多方法依赖于价值函数的近似来得出近乎最佳的策略。在部分可观察到的环境中,这些功能取决于观测和过去的动作的完整顺序,称为历史。在这项工作中,我们从经验上表明,经过验证的复发性神经网络在内部近似于这种价值函数,从而在内部过滤了鉴于历史记录的当前状态的后验概率分布,称为信念。更确切地说,我们表明,随着经常性神经网络了解Q功能,其隐藏状态与与最佳控制相关的状态变量的信念越来越相关。这种相关性是通过其共同信息来衡量的。此外,我们表明,代理的预期回报随着其经常性架构在其隐藏状态和信念之间达到高度相互信息的能力而增加。最后,我们表明,隐藏状态与变量的信念之间的相互信息与最佳控制无关,从而通过学习过程降低。总而言之,这项工作表明,在其隐藏状态下,近似可观察到的环境的Q功能的经常性神经网络从历史上复制了足够的统计量,该统计数据与采取最佳动作的信念相关的部分相关。
translated by 谷歌翻译
深层神经网络目前为显微镜图像细胞分割提供了令人鼓舞的结果,但是它们需要大规模标记的数据库,这是一个昂贵且耗时的过程。在这项工作中,我们通过将自我监督与半监督的学习相结合来放松标签要求。我们提出了基于边缘的地图的预测,以自我监督未标记的图像的训练,该图像与少数标记的图像的监督培训相结合,用于学习分割任务。在我们的实验中,我们在几次显微镜图像细胞分割基准上进行了评估,并表明只有少数注释的图像,例如原始训练集的10%足以让我们的方法与1到10次的完全注释的数据库达到类似的性能。我们的代码和训练有素的模型公开可用
translated by 谷歌翻译
生物视觉系统在没有监督的情况下学习视觉表示的能力是无与伦比的。在机器学习中,对比度学习(CL)已导致以无监督的方式形成对象表示。这些系统学习了对图像的增强操作不变的表示,例如裁剪或翻转。相反,生物视觉系统利用视觉体验的时间结构。这可以访问CL中常用的不常见的增强,例如从多个观点或不同背景观看相同的对象。在这里,我们系统地研究并比较了此类基于时间的增强对对象类别的潜在好处。我们的结果表明,基于时间的增强功能超过了最先进的图像增强功能。具体而言,我们的分析表明:1)3-D对象旋转极大地改善了对象类别的学习; 2)在不断变化的背景下查看对象对于学习丢弃与背景相关的信息至关重要。总体而言,我们得出的结论是,基于时间的增强可以极大地改善对比度学习,从而缩小人工和生物视觉系统之间的差距。
translated by 谷歌翻译